Retrospective Forecasts of the Hurricane Season Using a Global Atmospheric Model Assuming Persistence of SST Anomalies

نویسندگان

  • MING ZHAO
  • ISAAC M. HELD
  • GABRIEL A. VECCHI
چکیده

Retrospective predictions of seasonal hurricane activity in the Atlantic and east Pacific are generated using an atmospheric model with 50-km horizontal resolution by simply persisting sea surface temperature (SST) anomalies from June through the hurricane season. Using an ensemble of 5 realizations for each year between 1982 and 2008, the correlations of the model mean predictions with observations of basin-wide hurricane frequency are 0.69 in the North Atlantic and 0.58 in the east Pacific. In the North Atlantic, a significant part of the degradation in skill as compared to a model forced with observed SSTs during the hurricane season (correlation of 0.78) can be explained by the change from June through the hurricane season in one parameter, the difference between the SST in the main development region and the tropical mean SST. In fact, simple linear regression models with this one predictor perform nearly as well as the full dynamical model for basin-wide hurricane frequency in both the east Pacific and the North Atlantic. The implication is that the quality of seasonal forecasts based on a coupled atmosphere–ocean model will depend in large part on the model’s ability to predict the evolution of this difference between main development region SST and tropical mean SST.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sensitivity Study of the Thermodynamic Environment on GFDL Model Hurricane Intensity: Implications for Global Warming

In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to 648C and sea surface temperatures ranging from 268 to 318C given the same...

متن کامل

Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM

A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of t...

متن کامل

An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins

Updates to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin are described. SHIPS combines climatological, persistence, and synoptic predictors to forecast intensity changes using a multiple regression technique. The original version of the model was developed for the Atlantic basin and was run in near–real time at the Hurricane Research Division beginning in ...

متن کامل

Investigation of the atmospheric circulation anomalies associated with extreme rainfall events over the Coastal West Africa

This study investigates the atmospheric circulation associated with extreme rainfall events over the coastal West Africa. The rainfall data of this study were obtained from the Global Precipitation Climatology Centre (GPCC), spanning from 1981 to 2010. The atmospheric datasets were also obtained from the ERA-Interim reanalysis. The study employed the Z-Index to categorize dry and wet years into...

متن کامل

The Impact of Cloud Radiative Feedback, Remote ENSO Forcing, and Entrainment on the Persistence of North Pacific Sea Surface Temperature Anomalies

The influence of cloud radiative feedback, remote ENSO heat flux forcing, and oceanic entrainment on persisting North Pacific sea surface temperature (SST) anomalies is investigated using a stochastically forced ocean mixed layer model. The stochastic heat flux is estimated from an atmospheric general circulation model, the seasonally varying radiative feedback parameter and remote ENSO forcing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010